On-chip plasmon-induced transparency based on plasmonic coupled nanocavities
نویسندگان
چکیده
On-chip plasmon-induced transparency offers the possibility of realization of ultrahigh-speed information processing chips. Unfortunately, little experimental progress has been made to date because it is difficult to obtain on-chip plasmon-induced transparency using only a single meta-molecule in plasmonic circuits. Here, we report a simple and efficient strategy to realize on-chip plasmon-induced transparency in a nanoscale U-shaped plasmonic waveguide side-coupled nanocavity pair. High tunability in the transparency window is achieved by covering the pair with different organic polymer layers. It is possible to realize ultrafast all-optical tunability based on pump light-induced refractive index change of a graphene cover layer. Compared with previous reports, the overall feature size of the plasmonic nanostructure is reduced by more than three orders of magnitude, while ultrahigh tunability of the transparency window is maintained. This work also provides a superior platform for the study of the various physical effects and phenomena of nonlinear optics and quantum optics.
منابع مشابه
Dynamically Tunable Plasmon-Induced Transparency in On-chip Graphene-Based Asymmetrical Nanocavity-Coupled Waveguide System
A graphene-based on-chip plasmonic nanostructure composed of a plasmonic bus waveguide side-coupled with a U-shaped and a rectangular nanocavities has been proposed and modeled by using the finite element method in this paper. The dynamic tunability of the plasmon-induced transparency (PIT) windows has been investigated. The results reveal that the PIT effects can be tuned via modifying the che...
متن کاملPlasmon-induced transparency with detuned ultracompact Fabry-Perot resonators in integrated plasmonic devices.
We demonstrate the realization of on-chip plasmonic analogue of electromagnetically induced transparency (EIT) in integrated plasmonic devices using detuned Fabry-Perot resonators aperture-side-coupled to a metal-insulator-metal (MIM) waveguide, with the transmission peak occurring at the intermediate wavelength. Strong MIM mode confinement along with localized side-coupling allows one to reali...
متن کاملNanoscale Plasmonic Devices Based onMetal-Dielectric-Metal Stub Resonators
We review some of the recent research activities on plasmonic devices based on metal-dielectric-metal (MDM) stub resonators for manipulating light at the nanoscale. We first introduce slow-light subwavelength plasmonic waveguides based on plasmonic analogues of periodically loaded transmission lines and electromagnetically induced transparency. In both cases, the structures consist of a MDM wav...
متن کاملSubwavelength slow-light waveguides based on a plasmonic analogue of electromagnetically induced transparency
We introduce a plasmonic waveguide system, based on a plasmonic analogue of electromagnetically induced transparency, which supports a subwavelength slow-light mode, and exhibits a small group velocity dispersion. The system consists of a periodic array of two metal-dielectric-metal (MDM) stub resonators side-coupled to a MDM waveguide. Decreasing the frequency spacing between the two resonance...
متن کاملشفافیت القایی الکترومغناطیسی در سیستم پلاسمونیکی متشکل از سه تیغه موازی فلز- دی الکتریک- فلز: برهمکنش پلاسمون- پلاسمون
In this paper, electromagnetically induced transparency (EIT) in a system consisting of associated arrays of parallel slabs (metal-dielectric-metal) is studied. The transmission coefficient, the reflection coefficient and the absorption coefficient as function of the incident light frequency by using the transfer matrix method is calculated and numerically discussed. Influence of the thickness ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 4 شماره
صفحات -
تاریخ انتشار 2014